
The School of Mathematics

Modelling soccer scores with
Integrated Nested Laplace

Approximation

by

Dongrui Shen

Dissertation Presented for the Degree of

MSc in Computational Applied Mathematics

August 2012

Supervised by

Dr Daniel Paulin

Abstract

Statistical modelling of sports data is a popular topic and many research have been produced

to this aim, also with regard to football. Many different models are proposed to estimate the

probability of win or lose for a team, or to predict the number of goals scored of a particular

match. Recently INLA has been successfully used for predicting the scores of soccer matches

using a Poisson likelihood model. The objective of this project is to further improve to this

model, main approaches include: (1) incorporating additional open data that covers multiple

seasons, (2) and using sophisticated random effect terms that allow for modelling the time

dependence of the model parameters. In this report, we propose a Poisson hierarchical model,

test its predictive performance on the data of English Premier League from 2011/12 to 2020/21

and compare it with the Poisson fixed-effect model.

Acknowledgments

I wish to acknowledge the help provided by the support staff in the School of Mathematics of

the University of Edinburgh. I would also like to show my deep appreciation to my supervisors

Dr. Daniel Paulin who helped me finalize my project.

Own Work Declaration

I declare that this thesis is an original report of my research, has been written by me and

has not been submitted for any previous degree. The experimental work is almost entirely my

own work; the collaborative contributions have been indicated clearly and acknowledged. Due

references have been provided on all supporting literature and resources.

Contents

1 Introduction 1

2 Methodology 2

2.1 Bayesian inference . 2

2.2 The integrated nested Laplace approximation . 5

2.2.1 The core of INLA: Laplace approximation 5

2.2.2 INLA setting: latent Gaussian models . 6

2.2.3 Inference with INLA . 8

2.3 The R-INLA package . 12

3 Data exploration and preprocessing 14

3.1 Data description . 14

3.2 Data preparation . 14

3.3 Basic analysis of English Premier League data . 15

4 Soccer scores prediction 17

4.1 Models . 17

4.1.1 Simple Poisson Regression: baseline . 17

4.1.2 Team strength as a time-invariant random effect: iid model 17

4.1.3 Team strength as a time-variant random effect: blocked random walk model 17

4.2 Estimation and evaluation . 21

4.3 Results . 23

5 Discussion 25

Appendices 28

A The INLA implementation of Poisson likelihood models 28

B Construct the blocked random walk precision matrix 32

C The temporal evaluation framework 34

I

List of Tables

1 Comparison between RPS of different models computed in the temporal evalua-

tion framework. We can’t observe obvious correlation between the size of training

data and the value of RPS. 23

2 Comparison between classification accuracy of different models computed in the

temporal evaluation framework. A minus upward trend as the training data size

increases could be found in the first six experiments. 23

3 The RPS and classification accuracy of applying different models to the test data

(EPL, 2019-2021). 24

List of Figures

1 Density function for Gamma distributions with different values of the shape and

scale hyperparameters [2]. 3

2 The Laplace Approximation of Gamma distribution is Gaussian [2]. 6

3 The normalized posterior distribution for ψ. The distribution is skewed [2]. . . . 11

4 Left: the conditional distributions of θ|ψ(j),y for each value of {ψ(j)}; Right: The

solid curve represent the weight joint posterior distribution p(θ(l)|ψ(j),y)p(ψ(j)|y)∆j ;

the dashed curve is the posterior distributions p(θ|y) [2]. 11

5 The frequency of match outcomes in the EPL data (2011-2021). The most fre-

quent outcomes are draw and home win. 15

6 Left: the distribution of the number of goals scored; Right: goals difference in the

EPL data (2011-2021). 16

7 The number of goals scored by different teams in the EPL data (2011-2021).

Teams with the highest points also scored the highest number of goals. 16

8 The attack strength and defense strength of different teams estimated by the

marginal posterior mean of the fixed effects in the gBRW1 model. In this model,

R-INLA sets the strength of Arsenal to zero automatically to ensure the identifi-

ability of the team strengths. 21

9 Top: compare the observed scores distribution with the one predicted by the

gBRW1 model estimated with the test data (EPL, 2019 - 2021); Bottom: compare

the observed goals difference (home team score - away team score) distribution

with the one predicted by the gBRW1 model. 22

II

1 Introduction

The problem of modelling football data has become increasingly popular in the last few years

and many different models have been proposed with the aim of estimating the characteristics

that bring a team to lose or win a game, or to predict the score of a particular match [1].

From the statistical point of view, an interesting issue is the distribution form of the number of

scores in a single game by the two teams. Although the binomial distribution has been proposed

in the late 1970s [3], the Poisson distribution has been widely accepted as a suitable model

to this aim. In addition, we often use a simplifying assumption of independence between the

goals scored by home team and away team. For example, a model has been proposed with

two independent Poisson variables where the model parameters are constructed as the product

of attack strength and defense strength. Nevertheless, we can observe low levels of negative

correlation between the two quantities from the empirical study. Consequently, a correlation

factor could be added to the independent Poisson model to improve the predictive performance

[4]. Also, more sophisticated models have been proposed. For example, the bivariate Poisson

distribution allows for a more complex formulation for the likelihood function and an additional

parameter explaining the covariance between the two quantities [6]. Another interesting issue

is the way modelling football data. Other than modelling the outcomes or the number of goals

scored, one can model the difference of the scores by the two teams. A Bayesian network are

used to implement this model [7].

In this paper, we focus on the Bayesian hierarchical models for the number of goals scored by

two teams in each match. Bayesian hierarchical models with latent Gaussian layers are flexible

in capturing complex stochastic behavior and hierarchical structures in high dimensional spatial

and spatio-temporal data [10]. Whereas Markov Chain Monte Carlo (MCMC) methods may

be extremely slow and even become computationally unfeasible when dealing with such com-

plex models, the inferential framework of Integrated Nested Laplace Approximation (INLA),

proposed by Rue et al. [12], naturally accommodates hierarchical models and could be used to

provide accurate and efficient estimations to the posterior distribution of interest. Many case

studies have been conducted through INLA. Blangiardo and Cameletti reviews INLA in details

and gives many practical examples in their monograph [2]. The basic idea of INLA is to perform

Laplace approximation in a nested manner. It makes use of Gaussian-Markov dependence struc-

ture to break up posterior integration into a nested product of low dimensional integrals, which

makes it applicable to high dimensional complex models. Besides, by assuming two conditionally

independent Poisson variables, we have taken account of the correlation between home scores

and away scores and hence a bivariate structure is unnecessary.

This paper is structured as follows: section 2 gives a short introduction to Bayesian infer-

ence and the INLA method; section 3 describes the data used; section 4 specifies the models,

describes the model checks performed and displays the estimation result; Finally, section 5

concludes with discussion. Code for implementing all of the models is available on Github

(https://github.com/grantaire08/modelling-football-scores-with-INLA).

1

https://github.com/grantaire08/modelling-football-scores-with-INLA

2 Methodology

In this section, we provide a brief introduction to Bayesian inference and INLA that provides

necessary notation and context for the developing and estimating of the models.

2.1 Bayesian inference

Bayesian inference is a method of statistical inference based on Bayes theorem:

Theorem 2.1 (Bayes theorem) Assume A and B are events and P (B) 6= 0, the probability

of B given A is as follows:

Pr(B|A) =
Pr(A|B)Pr(B)

Pr(A)
(2.1)

In the scenario of Bayesian Inference, we consider a random variable Y , modeled by a prob-

ability distribution and indexed by a generic parameter θ. Let:

L(θ) = p(Y = y|θ) (2.2)

be the likelihood function which specifies the probability distribution of the data Y under the

moel defined by θ. We assume the data y are randomly sampled from the interested population,

which means the variability on y only depends on the sampling. As for the parameter θ, we

choose a suitable prior probability distribution p(θ) to reflect our prior belief on θ.

Solving a Bayesian inference problem is to obtain the posterior distribution p(θ|y) of unknown

parameters θ, whose prior distribution need to be stated. Applying the Bayes theorem, we get:

p(θ|y) =
p(y|θ)p(θ)
p(y)

(2.3)

We call p(y) the marginal distribution of the data y, which could be obtained using the

formula of total probability as follows:

p(y) =
∑
θ∈Θ

p(y|θ)p(θ) or p(y) =

∫
θ∈Θ

p(y|θ)p(θ)dθ (2.4)

which depends on whether y is discrete or continuous. With our assumption on the variability

on y, p(y) could be normally recognized as a normalization constants, so an alternative form of

(2.3) is:

p(θ|y) ∝ p(y|θ)p(θ) (2.5)

When performing Bayesian inference, the choice of prior distribution is an important concern.

Normally, the type of distribution are expected to reflect the nature of parameters and the

hyperparameters of prior distribution tune the level of information provided. When knowledge

is limited, vague priors are assumed so that the posterior distribution is driven by the observed

data. From the practical perspective, for most random choices of priors, we cannot get a closed

form of the posterior distribution. In order to reduce the computation complexity, we usually

choose the priors with good properties. To be precise, the conjugate priors, in which the prior is

of the same form as the likelihood. Common inference models using conjugate priors includes:

Binomial-Beta model, Gaussian-Gaussian model and Poisson-Gamma model.

2

Figure 1: Density function for Gamma distributions with different values of the shape and scale
hyperparameters [2].

In the study of football scores, we consider goal scoring as a counting process in which the

data are the count of goals (y ∈ N ∩ [0,+∞)) . Hence, it can be modeled using a Poisson

likelihood:

y|λ ∼ Poisson(λ) (2.6)

where p(y|λ) = λy exp(−λ)
y! .

The conjugate prior of Poisson likelihood is the Gamma distribution:

λ ∼ Gamma(a, b) (2.7)

where p(λ) = ba

Γ(a)λ
a−1 exp(−bλ). The mean and variance of the Gamma distribution are a/b

and a/b2 respectively. By changing the values of hyperparameters a and b, we can modify the

shape and scale of the distribution flexibly (see Fig. 1).

Combining the Poisson likelihood and Gamma prior, the posterior distribution is able to be

expressed in the following closed form:

p(λ|y) ∝ ba

Γ(a)
λa−1 exp(−bλ)

λy exp(−λ)

y!

∝ λa+y−1 exp(−(b+ 1)λ)

(2.8)

which could be considered as a Gamma distribution, i.e., λ|y ∼ Gamma(a + y, b + 1). The

corresponding posterior mean is:

E(λ|y) =
a+ y

b+ 1
(2.9)

The example above illustrate the convenience brought by conjugate models. Nevertheless,

conjugacy does not hold in most practical cases. For example, for a generic parameter θand a

3

function h(·) of θ, the posterior mean of h(θ) is defined as:

E(h(θ)|y) =

∫
θ∈Θ

h(θ)p(θ|y)dθ (2.10)

Since the posterior p(θ|y) could be complex when conjugacy is not applicable, approximation

methods may be necessary.

4

2.2 The integrated nested Laplace approximation

Some of the mainstream approaches to deal with the computational aspects of Bayesian inference

are based on statistical simulations, which generate random values from a give density function

by a computer, such as Monte Carlo (MC) and Markov chain Monte Carlo (MCMC).

MC method approximates integrals using the empirical average, which is known as Monte

Carlo integration. For example, the posterior mean E(h(θ)|y) defined in (2.10) is approximated

using
∑m

i=1 h(θ(i))
m , where {θ(i)}mi=1 is a sample of m independent values of θ. The implementation

of MC methods just requires simulating values from given posterior distribution. Despite the

simplicity, MC methods have some inevitable limitations in practical cases: First, it assume the

posterior distribution is in a known form. Second, it is difficult to draw iid MC sample directly

from the posterior distribution. In these situations, instead of simulating independent values

from the posterior distribution, we draw a sample by running a Markov chain (which consists

of correlated values), whose stationary distribution is the posterior density. This procedure

combines MC integration with Markov Chains and is known as MCMC.

For a long time, MCMC methods have been seen as powerful tools for Bayesian inference.

In particular, the Gibbs sampler and the MH algorithm allows implementing MCMC on very

complex models (where the number of parameters is large or the posterior distributions are not

in the closed form). Despite that, when models are complex or we deal with massive data sets,

MCMC methods may be extremely slow and even become computationally unfeasible. Besides,

when making inference with MCMC, particular attention is paid to the analysis of MCMC

output in order to achieve convergence and find the best setting in terms of parameterization,

prior distributions, initial values, and MH proposal distributions.

Recently, there is an alternative to MCMC, the integrated nested Laplace approximation

(INLA) , proposed by Rue et al. [12], which could reduce the computational costs of Bayesian

inference. Unlike simulation-based MC and MCMC, INLA is a deterministic algorithm for

Bayesian inference. The numerical integration method Laplace approximation is adopted by

INLA. INLA is especially designed for latent Gaussian models, and outperforms MCMC in

terms of both accuracy and efficiency [2]. A recent review on INLA can be found in the Rue et

al.’s work in 2017 [13].

2.2.1 The core of INLA: Laplace approximation

Suppose we are interested in computing the following integral:∫
f(x)dx =

∫
exp(log f(x))dx (2.11)

where f(x) is the density function of a random variable X. The second order Taylor expansion

of log f(x) at x = x0 is:

log f(x) ≈ log f(x0) + (x− x0)
∂ log f(x)

∂x
|x=x0 +

(x− x0)2

2

∂2 log f(x)

∂x2
|x=x0 (2.12)

If x0 is set to be the mode x∗ = argmaxxlog f(x), then ∂ log f(x)
∂x |x=x∗ = 0 and the expansion

above becomes:

log f(x) ≈ log f(x∗) +
(x− x∗)2

2

∂2 log f(x)

∂x2
|x=x∗ (2.13)

5

Figure 2: The Laplace Approximation of Gamma distribution is Gaussian [2].

The integral of interest is then approximated as follows:∫
f(x)dx ≈

∫
exp(log f(x∗) +

(x− x∗)2

2

∂2 log f(x)

∂x2
|x=x∗)dx

= exp(log f(x∗))

∫
exp(

(x− x∗)2

2

∂2 log f(x)

∂x2
)dx

(2.14)

By setting σ∗2 = 1/∂
2 log f(x)
∂x2

, the approximation above becomes:∫
f(x)dx ≈ exp(log f(x∗))

∫
exp(−(x− x∗)2

2σ∗2
)dx (2.15)

where the integrand can be associated with a Gaussian distribution N(x∗, σ∗2). Hence, the

integral above can be approximated explicitly:∫ β

α
f(x)dx ≈ f(x∗)

√
2πσ∗2(Φ(β)− Φ(α)) (2.16)

where Φ(·) is the cumulative density function of the Gaussian distribution N(x∗, σ∗2). As a

special case, the Laplace approximation of Gamma(a, b) is N(a−1
b , a−1

b2
) (see Fig. 2).

2.2.2 INLA setting: latent Gaussian models

We denote the observed data by y = (y1, · · · , yn). Assume the distribution p(yi|φi) of yi, is

characterized by a parameter φi defined as a function of a structured linear predictor ηi through

a link function g(·) (such as the identity function and the log function). The linear predictor ηi

6

has the following form:

ηi = β0 +
M∑
m=1

βmx
(m)
i +

L∑
i=1

fl(z
(l)
i) (2.17)

Here, β0 is the intercept;
∑M

m=1 βmx
(m)
i is the linear combination of some covariates xi =

(x
(1)
i , · · · , x(M)

i) with coefficients β = (β1, · · · , βM), which are called *fixed effects*;
∑L

i=1 fl(z
(l)
i)

is the sum of some smooth nonlinear effects f = {f1(·), · · · , fL(·)} on covariates z = (z1, · · · , zL);

and these nonlinear effects could be time trends and seasonal effects, random intercept and slopes

as well as spatio or spatial random effects.

A simplest example of the general representation above is the linear regression model. In the

linear regression assumes yi = β0 +
∑M

m=1 βmx
(m)
i + εi, where εi is Gaussian noise drawn from

N(0, σ2).

Another example are generalized linear models (GLMs), such as Poisson regression model.

Poisson regression model assumes that yi|xi, β0,β ∼ Poisson(λ), where the mean of the pre-

dicted Poisson distribution λ is given by:

log(λi) = ηi = log(E(yi|xi, β0,β)) = β0 +

M∑
m=1

βmx
(m)
i (2.18)

To simplify the representation, the above could be rewrite as ηi = β · xi.
After specifying a distribution for the observed data in the general form stated above, we

collect all the latent components of interest for the inference in a generic parameter θ called a

latent field, defined as θ = {β0,β,f}ni=1. Further, we denote with ψ = {ψ1, · · · , ψK} the vector

of the K hyperparameters. Under the assumption of conditional independence, the distribution

of the n observations is given by the likelihood:

p(y|θ, ψ) =
n∏
i=1

p(yi|θi,ψ) (2.19)

We assume a multivariate Gaussian prior N(0,Σ−1(ψ)) on the latent field θ (i.e. latent

Gaussian field) and hence the density is given by:

p(θ|ψ) =
1√

(2π)n/|Σ(ψ)|
exp(−1

2
θTΣ(ψ)θ) (2.20)

Note the conditional independence between components of the latent Gaussian field θ. Suppose

the components θi and θj are conditionally independent given all the other components θ−i,j ,

their joint conditional distribution can be factorized as follows:

p(θi, θj |θ−i,j) = p(θi|θ−i,j)p(θj |θ−i,j) (2.21)

which are denoted as θi ⊥ θj |θ−i,j . For any i 6= j, it can be concluded that:

θi ⊥ θj |θ−i,j ⇔ Σij(ψ) = 0 (2.22)

where Σij(ψ) is the entry in the i−th row and j−th column of the precision matrix Σ(ψ).

Hence, the precision matrix is sparse which allows for computational benefits when making

inference. The specification of conditional independence is known as Gaussian Markov random

7

field (GMRF) [2].

To sum up, the specification above defines a latent Gaussian model (LGM):

ψ ∼ π(ψ) (Hyperprior)

θ|ψ ∼ N(0,Σ(ψ)) (GMRF)

y|θ, ψ ∼ p(y|θ, ψ) =

n∏
i=1

p(yi|θi,ψ) (Likelihood)

The joint posterior distribution of θ and ψ is:

p(θ, ψ|y) ∝ p(ψ) · p(θ|ψ) · p(y|θ, ψ)

∝ p(ψ) · p(θ|ψ) ·
n∏
i=1

p(yi|θi,ψ)

∝ p(ψ) · |Σ(ψ)|1/2 exp(−1

2
θTΣ(ψ)θ) ·

n∏
i=1

exp(log(p(yi|θi,ψ)))

∝ p(ψ) · |Σ(ψ)|1/2 exp(−1

2
θTΣ(ψ)θ +

n∑
i=1

log(p(yi|θi,ψ)))

(2.23)

In addition, to simplify the discussion, we assume the likelihood is the density for a univariate

distribution (only one target variable) and each observed data yi corresponds to only one element

θi in the latent field. Martins er al. have discussed the possibility of connecting each observation

to a linear combination of elements in θ and take account the case when the data belong to several

distributions, i.e. the multiple likelihoods case [9] .

2.2.3 Inference with INLA

Recall from Sec. 2.1, Bayesian inference is about obtaining the posterior distributions. To be

precise, we are interested in the marginal posterior distribution for each element of parameter

vector p(θi|y) and for each element of the hyper parameter vector p(ψk|y).

Rewrite these interested marginal posteriors in the form of integrals, we get:

p(θi|y) =

∫
p(θi,ψ|y)dψ =

∫
p(θi|ψ, y)p(ψ|y)dψ (2.24)

p(ψk|y) =

∫
p(ψ|y)dψ−k (2.25)

Hence, we need first compute p(ψ|y) to obtain all the p(ψk|y). Together with p(θi|ψ, y), we

can compute all the p(θi|y).

The posterior distribution of the hyperparameter ψ is:

p(ψ|y) ∝
∫
p(θ, ψ|y)dθ

∝
∫
p(y|θ, ψ)p(θ)p(ψ)dθ

(2.26)

8

To avoid the integration, we use the following representation instead:

p(ψ | y) =
p(θ,ψ | y)

p(θ | ψ,y)

=
p(y | θ,ψ)p(θ,ψ)

p(y)

1

p(θ | ψ,y)

=
p(y | θ,ψ)p(θ | ψ)p(ψ)

p(y)

1

p(θ | ψ,y)

∝ p(y | θ,ψ)p(θ | ψ)p(ψ)

p(θ | ψ,y)

≈ p(y | θ,ψ)p(θ | ψ)p(ψ)

p̃(θ | ψ,y)

∣∣∣∣
θ=θ∗(ψ)

=: p̃(ψ | y)

(2.27)

where p̃(·) is the Laplace approximation. In fact, p(θ|ψ, y) is almost Gaussian under the as-

sumption of GMRF. Since the observed data y is generally uninformative, we can use the GMRF

p(θ|ψ) to approximate p(θ|ψ, y). It turns out that the Laplace approximation is of a high level

of accuracy.

In the next, we rewrite p(θi|ψ, y) in a similar way:

p (θi | ψ,y) =
p ((θi,θ−i) | ψ,y)

p (θ−i | θi,ψ,y)

=
p(θ,ψ | y)

p(ψ | y)

1

p (θ−i | θi,ψ,y)

∝ p(θ,ψ | y)

p (θ−i | θi,ψ,y)

≈ p(θ,ψ | y)

p̃ (θ−i | θi,ψ,y)

∣∣∣∣
θ−i=θ

∗
−i(θi,ψ)

=: p̃ (θi | ψ,y)

(2.28)

Again, since θ−i|θi,ψ, y are generally normal distributed, the Laplace approximation here

is very accurate. Although it could be computationally expensive compared to the previous one.

Some modifications to Laplace approximation could help reduce the computational costs here.

Another faster alternative method to approximate p(θi|ψ, y) is *simplified Laplace approxima-

tion*. This is based on a third order Taylor expansion of both the numerator and denominator

of p(θi|ψ, y). It effectively corrects the Laplace approximation of p(θi|ψ, y) for location and

skewness, leading to better accuracy. In practice, simplified Laplace approximation is a prior

option compared to the full Laplace approximation [12].

Combining the approximated p(θ|ψ, y) And p(θi|ψ, y), the marginal posterior distribution

p(θi|y) are approximated by:

p̃ (θi | y) ≈
∫
p̃ (θi | ψ,y) p̃(ψ | y)dψ (2.29)

Note that the integral can be solved through a finite weighted sum of values at some relevant

integration points {ψ(j)} with the corresponding weights {∆i}.
Generally, INLA works in the following steps:

• Explore the marginal of hyperparameters p(ψ|y);

– Find the mode ψ∗ of p̃(ψ|y) by optimizing log p̃(ψ|y);

9

– Compute the negative Hessian H at the mode;

– Reparameterize the ψ−Space by defining the new variable z that satisfies ψ(z) =

ψ∗+V Γ1/2z to standardize the variables, improve conditioning and simply numerical

integration;

– Detect good integration points {ψ(j)} using grid strategy or CCD strategy [12];

– Obtain the marginal of hyperparameters p(ψ|y) by interpolation using the values of

p̃(ψ(j)|y) and {ψ(j)};

• For each value in {ψ(j)
k }, evaluating the values of p̃(θi|ψ(j), y) on a grid of selected values

for θi; and obtain the marginals of parameters p(θ|y) in (2.29) by numerical integration.

In the following, we will illustrate how the INLA works through a toy example from [2].

Suppose the observed data y = (y1, · · · , yn) are normally distributed with yi|µ, σ2 ∼ N(µ, σ2)

and independent with each other. Priors for µ and ψ = 1/σ2 are:

µ ∼ N(µ0, σ
2
0), ψ ∼ Gamma(a, b) (2.30)

Using the LGM notation, we get:

ψ ∼ Gamma(a, b)

θ ∼ N(µ0, σ
2
0)

y|θ, ψ ∼
n∏
i=1

N(θ, 1/ψ)

(2.31)

where θ = ηi = µ and ψ = 1/σ2.

First, explore the marginal of hyperparameters p(ψ|y):

p(ψ|y) =
p(θ, ψ|y)

p(θ|ψ,y)

∝ p(y|θ, ψ)p(θ)p(ψ)

p(θ|ψ,y)

(2.32)

Normally, the denominator p(θ|ψ, y) is approximated by the Laplace approximation. In this

particular case with normally distributed observations, we have:

p(θ|ψ, y) ∝ p(y|θ, ψ) · p(θ) ∼ N(θn, σ
2
n) (2.33)

where θn =
ψ
∑n

i=1 yi+µ0/σ
2
0

nψ+1/σ2
0

and σ2
n = 1

nψ+1/σ2
0
.

Further, since the terms depending on θ in the numerator and denominator of (2.32) have

to cancel out, we can fix the value of θ to be any arbitrary value. Let θ = θn, we get:

p(ψ|y) ∝ p(y|θ, ψ)p(θ)p(ψ)

p(θ|ψ,y)
|θ=θn =

1√
2πσ2

n

p(y|θ, ψ)p(θ)p(ψ)|θ=θn (2.34)

In order to evaluate the posterior p(ψ|y), some values for ψ are chosen, denoted as {ψ(j)}.
Here we simply choose the most probable values for ψ without using the gird strategy and CCD

10

Figure 3: The normalized posterior distribution for ψ. The distribution is skewed [2].

strategy. At ψ = ψ(j), the density is computed:

p(ψ(j)|y) ∝ 1√
2πσ2

n

p(y|θn, 1/ψ(j))p(θn)p(ψ(j)) (2.35)

where θn =
ψ(j)

∑n
i=1 yi+µ0/σ

2
0

nψ(j)+1/σ2
0

and σ2
n = 1

nψ(j)+1/σ2
0
.

Fig. 3 demonstrates the normalized posterior distribution for ψ. The obvious skewness

of the distribution is an effect of not reparamterizing the ψ−space into some normal-shaped

distribution.

Next, we evaluate the full conditional normal distribution p(θ|ψ,y) for each value of ψ in

{ψ(j)} and of θ in {θ(l)}. The marginal of parameter p(θ|y) can be obtained by the following

numerical integration:

p(θ(l)|y) ∝
∑
j

p(θ(l)|ψ(j),y)p(ψj |y)∆j (2.36)

where we set ∆j = ∆ = 1∑
j p(ψ

(j)|y)
(see Fig. 4).

(a) (b)

Figure 4: Left: the conditional distributions of θ|ψ(j),y for each value of {ψ(j)}; Right: The
solid curve represent the weight joint posterior distribution p(θ(l)|ψ(j),y)p(ψ(j)|y)∆j ; the dashed
curve is the posterior distributions p(θ|y) [2].

11

2.3 The R-INLA package

INLA implemented as an R package is called R-INLA. We will use a simple Poisson regression

example to introduce the R-INLA syntax. The INLA method for Bayesian inference can be

applied using the command:

1 > output <- inla(formula , data , family , ...)

where formula specifies the linear predictor; data contains the dataframe including the obser-

vations and covariates; and family defines the likelihood model adopted.

Consider the case of n observed data y, two covariates (x1, x2) and a function f(z) of

covariate z , then the linear predictor ηi = β0 + β1x
(1)
i + β2x

(2)
i + f(zi) are specified in R-INLA

through:

1 > formula <- y ~ 1 + x1 + x2 + f(z, model="...")

model="..." in the function f(·) specifies the type of f(·) function. Generally, the type of

covariate z must be integer or factor (When z is a factor variable, the corresponding levels need

to be passed by specifying values=...). The default choice is model="iid" which the random

variable indexed by z are independent and Gaussian distributed. We can check all available

latent effects by typing the command below (see details of each of them at http://www.r-

inla.org/models/latent-models):

1 > names(inla.models ()\$latent)

There are some other options can be specified in the f(·) function, such as hyper, constr,

diagonal and etc. All available likelihood distributions can be found using the command below

see details of each of them at http://www.r-inla.org/models/likelihoods.):

1 > names(inla.models ()\$likelihood)

By setting family="poisson", we could adopt a poisson regression model. Finally, we run

the INLA algorithm using the inla function:

1 > output <- inla(formula , family="poisson", data=df)

The inla function returns an object of class inla, which is a list consists of many information

about the trained model. One of the most common command to check the result is:

1 > summary(output)

2 Call:

3 "inla(formula = formula , family = \"poisson\", data = df)"

4 Time used:

5 Pre = 9.34, Running = 0.613, Post = 0.237, Total = 10.2

6 Fixed effects:

7 mean sd 0.025 quant 0.5 quant 0.975 quant mode kld

8 (Intercept) 0.079 0.212 -0.349 0.084 0.483 0.092 0

9 x1Aston Villa 0.008 0.191 -0.367 0.008 0.382 0.008 0

10 x1Brighton -0.312 0.208 -0.724 -0.310 0.093 -0.308 0

11 x1Burnley -0.495 0.220 -0.935 -0.493 -0.069 -0.488 0

12 x1Chelsea 0.050 0.188 -0.319 0.050 0.421 0.050 0

13 x1Crystal Palace -0.266 0.207 -0.676 -0.265 0.136 -0.263 0

14

15 x2Aston Villa 0.165 0.218 -0.260 0.165 0.595 0.163 0

16 x2Brighton 0.150 0.218 -0.276 0.149 0.580 0.148 0

17 x2Burnley 0.322 0.210 -0.085 0.321 0.737 0.318 0

12

http://www.r-inla.org/models/latent-models
http://www.r-inla.org/models/latent-models
http://www.{}.org/models/likelihoods

18 x2Chelsea -0.077 0.231 -0.532 -0.076 0.376 -0.075 0

19 x2Crystal Palace 0.513 0.202 0.122 0.511 0.916 0.507 0

20

21 Random effects:

22 Name Model

23 z IID model

24

25 Model hyperparameters:

26 mean sd 0.025 quant 0.5 quant 0.975 quant mode

27 Precision for z 18660.63 17200.12 487.41 13453.85 64801.67 112.62

28

29 Expected number of effective parameters(stdev): 39.39(1.36)

30 Number of equivalent replicates : 19.30

31

32 Marginal log -Likelihood: -1298.75

As above, we display the result of a Poisson mixed effects model used for football scores

prediction. There are some important statics such as computing times, statics of posterior

distributions for fixed effects and for the hyperparameters of random effects. Further, R-INLA

provides an estimated of the effective number of parameters which can be used as a measure

of the model complexity. The number of equivalent replicates can be considered as the average

number of observations available to estimate each parameter in the model. R-INLA computes

the marginal log-likelihood of the model by default, which could be used as a model comparison

criterion.

13

3 Data exploration and preprocessing

Before developing and estimating the models, it is useful to have a brief introduction to the

competition format of English Premier League. In this section, we introduce the data sets used

and the necessary preprocessing performed. In addition, we perform a basic analysis of the data

sets to summarize the main characteristics.

3.1 Data description

English Premier League (EPL) is the top level of the English football league system and it con-

sists of 20 teams. The Premier League season goes from August to May and involves the teams

playing each other home and away across the season, a total of 380 matches. The league began

in 1992 and has seen seven different winners: Manchester United, Arsenal, Chelsea, Manch-

ester City, Blackburn Rovers, Leicester City and Liverpool. Man United have had the most

success with 13 titles in the 28 seasons so far. Man City have the Premier League record for the

biggest winning margin, when they finished19 points ahead of second-placed Manchester United

in 2017/18. The English Premier League operates on a system of promotion and relegation with

the English Football League. Three points are awarded for a win, one point for a draw and none

for a lose. The team with the most points at the end of the season wins the Premier League

title. If any clubs finish with the same number of points, their position in the Premier League

table is determined by goal difference, then the number of goals scored. If the teams still cannot

be separated, they will be awarded the same position in the table. The teams that finish in the

bottom three of the league table at the end of the campaign are relegated to the Championship,

the second tier of English football.

We use the English Premier League data set from 2011 to present which contains 10 seasons

covering 35 clubs. Normally, seasons run from August to May contested with 20 teams and each

team plays 38 rounds, i.e. 38 matches. The 2019/20 season is an exception. COVID-19 resulted

in a three-month lay-off of the Premier League since March 2020. The data can be found at

https://www.football-data.co.uk/. The original data set consists of 70 variables, including basic

game information(e.g. date, time, home team, away team and scores), some match statistics and

some betting odds data from bookmakers. Since we are not interested in analyzing either the

detailed game performance or the information from bookmakers, we only keep the basic game

information. Besides, we expect that our model could reflect the effect of important events, for

example, the arrival of new managers. An additional data set of Premier League Managers (see

https://en.wikipedia.org/wiki/List of Premier League managers) is used for this purpose.

3.2 Data preparation

We prepare the data by three steps: first, tidy up the data; second, restructure the data; finally,

merge the Premier League Managers data with the English Premier League data.

Restructuring the data is most important step. Observing the original data, we find the

target variable team score distributing as two variables, home team score and away team score,

in the original data which is not applicable to models with one output. Hence, in the new data,

we record each game using two rows; the first row takes home team as attack team and away

team as defense team and the second row does the opposite. The score of attack team is the

14

https://www.football-data.co.uk/englandm.php
https://en.wikipedia.org/wiki/List_of_Premier_League_managers

Figure 5: The frequency of match outcomes in the EPL data (2011-2021). The most frequent
outcomes are draw and home win.

target variable. Note that the original data can be applied to models with multiple outputs (e.g.

bivariate Poisson model) which is not the focus of this study.

In addition, we find some anomalies in the data to make note of. The dates in the original

data are stored as strings in two formats, ”dd/mm/yyyy” and ”dd/mm/yy” respectively. They

need to be transformed to Date variables with the uniform format, ”yyyy-mm-dd”. Besides,

the English Premier League data uses the abbreviation of club names while the Premier League

Managers data uses the full name. Extra attention should be paid when merging the two data

sets.

3.3 Basic analysis of English Premier League data

First, we check the most frequent scoreline in the EPL data (see Fig. 5) which turns out to be

1:1, a draw. The top 5 most frequent scoreline are home win or draw, implying the existence of

home field advantages. Fig. 6 shows the distribution of scores and goals difference respectively.

We find most football matches have less than 3 scores, and the situation of zero goal is very

common. Also, the distribution goals difference is almost symmetrical around 0 with slight

right skewness. Despite that the final outcome of the majority of football matches is uncertain

until the end, such typical distribution characteristics of scores make it possible to make the

prediction based on goals alone. In Fig. 7, we check the number of goals scored by different

teams. We can find that the teams with the highest points also scored the highest number of

goals. Manchester City and Liverpool occupy the two top leading spots and they also scored the

most goals. Clubs that have been relegated from the EPL including Middlesbrough, Reading,

Bolton and etc. score the lowest number of goals.

15

Figure 6: Left: the distribution of the number of goals scored; Right: goals difference in the
EPL data (2011-2021).

Figure 7: The number of goals scored by different teams in the EPL data (2011-2021). Teams
with the highest points also scored the highest number of goals.

16

4 Soccer scores prediction

4.1 Models

We predict the number of goals by modelling the attack and defense strength of each team. The

data consists of T teams, denoted by t1, t2, · · · , tT . For team ti, the number of games played is

nT . The number of goals is denoted by y = (y1, · · · , y2G), where G is the number of games in

the data. We consider goal scoring as a counting process and assume a Poisson likelihood:

yi|φi ∼ Poisson(φi) (4.1)

where ηi = log(φi). The φi represents the scoring intensity which is affected by both attack

strength and the defense strength. The scoring intensity could be linked to a linear predictor ηi

as introduced in Sec. 2.2.2. The specification of the linear predictor are introduced as follows.

4.1.1 Simple Poisson Regression: baseline

By assuming the attack/defense strength for each team is a constant, we have the simple Poisson

regression specification as follows:

ηi = 1 +
∑
g∈G

βag ,αIai +
∑
g∈G

βdg ,ξIdi (4.2)

where g ∈ G traverses all rows in the data, ag and dg represent the attack or defense team in row

g, and the regression coefficients βtm,α and βtm,ξ represent the team-specific attack or defense

strength. In R-INLA, the corresponding formula is y ∼ 1 + attack +defense.

4.1.2 Team strength as a time-invariant random effect: iid model

In the specification, we model the team strength using independent and identically distributed

(iid) random effects. In fact, the scores of football are influenced by numerous factors. However,

we model the scoring intensity only with very limited features. A model like the iid model

accounts for disorganized variability in the data will be helpful to improve the performance.

We use two vectors of random variables uα = (αt1 , αt2 , · · · , αtT) and uξ = (ξt1 , ξt2 , · · · , ξtT) to

represent the attack and defense strength of each team respectively. In the model, we have:

ηi = 1 +
∑
g∈G

αagIai +
∑
g∈G

ξdgIdi (4.3)

where αt ∼ N(0, 1/τα) and ξt ∼ N(0, 1/τξ) for any arbitrary team t. Note that the attack (or

defense) strength for different teams are independent and identically distributed. In R-INLA, the

corresponding formula is y ∼ 1 + f(attack, model=’iid’) + f(defense, model=’iid’).

4.1.3 Team strength as a time-variant random effect: blocked random walk model

Assuming the strength of each team is a random variable changing over time, we take uα (or

uξ) as a vector of random variables to represent the attack strength (or defense strength) of

each team. To be precise, uα = (αt1,1, · · · , αt1,n1 , αt2,1, · · · , αt2,n2 , · · · , αtT ,1, · · · , αtT ,nT), where

αt,n represents the attack strength of the n−th game of team t (uξ is defined in the same way).

17

the process could be regarded as a random walk:

ηi = 1 + uα[jα] + uξ[jξ] (4.4)

where jα (or jξ) is the index of game i in uα(or uξ), ∆uαj = uα[j] − uα[j − 1] ∼ N(0, 1/τα),

∆uξi = uξ[j] − uξ[j − 1] ∼ N(0, 1/τα) and the increments are independent from each other.

Take the density for uαt = (αt,1, · · · , αt,n) as an example:

p(uαt|τα) ∝ τ (n−1)/2
α exp

(
−τα/2

n−1∑
i=1

(∆uαi)
2

)
∝ τ (n−1)/2

α exp(−τα/2uTαtQuαt)

(4.5)

where Q is the structure matrix of random walk:

Q =



1 −1

−1 2 −1

−1 2 −1
. . .

. . .
. . .

−1 2 −1

−1 2 −1

−1 1


n×n

(4.6)

The structure matrix Q is constructed by adding up n dimensional matrices U (i) that is zero

everywhere except for Ui,i = Ui+1,i+1 = −Ui,i+1 = −Ui+1,i = 1. U (i) has the following form:

U (i) =


. . .

1 −1

−1 1
. . .


n×n

(4.7)

We have Q =
∑n−1

i=1 U
(i).

The default setting of ’generic0’ in R-INLA could be used to implement this specification.

Random effects in R-INLA are defined with multivariate Gaussian distribution with mean zero

and precision matrix τΣ, i.e. N(0, (τΣ)−1). The ’generic0’ assumes Σ is a constant matrix.

Further, random walk could be implemented using ’generic0’ by setting Σ to be the structure

matrix of random walk Q.

Besides, second order random walk could also be implemented by setting Σ to be the struc-

18

ture matrix of second order random walk:

1 −2 1

−2 5 −4 1

1 −4 6 −4 1

1 −4 6 −4 1
. . .

. . .
. . .

. . .
. . .

1 −4 6 −4 1

1 −4 6 −4 1

1 −4 5 −2

1 −2 1



(4.8)

We call this specification, blocked random walk (BRW). Note that we assume all teams’ time-

varying strength share the same precision τ . In R-INLA, the corresponding formula is y ∼ 1 +

f(ID.a, model=’generic0’, Cmatrix = Σ) + f(ID.d, model=’generic0’, Cmatrix = Σ),

where ID.a and ID.d are corresponding indices in uα and uξ of each game. Further, we could

generalize BRW by considering:

1. the time-invariant team strength (fixed effects or iid effects);

2. the effect from the time difference between two games next to each other;

3. the effect from the the honeymoon period (30 days) for new managers.

By saying considering the last two effects, we mean decreasing the precision (increasing the

variance) by dividing one-step blocks Eq. by a constant related to those effects. New one-step

blocks are:

U (i) =
1

∆di + η Ih


. . .

1 −1

−1 1
. . .

 (4.9)

where ∆di is the number of days elapsed before the next game of the game in row i; Ih indicates

whether the game is in the honeymoon period for new managers and η is the scaling constant

(the default value is 10).

We call the generalized BRW model as gBRW model. Its formula in R-INLA is:

1. gBRW1: y ∼ 1 + attack + defense + f(ID.a, model=’generic0’, Cmatrix = Σ)

+ f(ID.d, model=’generic0’, Cmatrix = Σ);

2. gBRW2: y ∼ 1 + f(attack, model=’iid’) + f(defense, model=’iid’) + f(ID.a,

model=’generic0’, Cmatrix = Σ) + f(ID.d, model=’generic0’, Cmatrix = Σ).

The models above are characterized by both team-specific and time-specific covariates. It

could be written in terms of a hierarchical structure. The first level is identified by the obser-

vations, the number of scores, y = (y1, · · · , y2G), which are assumed to be independent and

identically distributed Poisson variables given the latent field θ (including regression parame-

ters, random effects of covariates, and etc.) and some hyperparameters ψ1. Each observation

in the first level belongs to one of the groups (divided by team and date). The groups here

19

are also called as second level units. At the second level, the latent field θ given some other

hyperparameters ψ2 (namely, the precision τ) is a multivariate Normal distribution. Finally,

the hyperparameters ψ = {ψ1,ψ2} have the prior distribution (the default setting of R-INLA is

log-Gamma(1,5e-5)). Such a hierarchical structure ensures observations that belong to the same

second level unit are more similar to each other.

20

4.2 Estimation and evaluation

To predict the scores of matches, we create a new dataframe where the matches of interest

have NA in their response variables y. We fit the Poisson regression model in INLA for this

new data set, including the options needed for sampling and then simulate 1000 samples from

the joint approximated predictive distribution of the number of goals by home and away teams

respectively, using the inla.posterior.sample method of R-INLA. Further, we can estimate

the probabilities of home win, draw and lose to compute the predictive criteria we need.

Some posterior predictive model checks are done to assess model fit. For instance, in Fig. 8,

we plot the attack strength and defense strength of different teams estimated by the marginal

posterior mean of the fixed effects in the gBRW1 model. High attack strength and low defense

strength increases the scoring intensity of a team. We can find those massive clubs such as Man

City, Liverpool, Chelsea, Man United and Tottenham located at the lower bottom. Thus, this

provides evidence that the model is able to make sensible predictions.

Figure 8: The attack strength and defense strength of different teams estimated by the marginal
posterior mean of the fixed effects in the gBRW1 model. In this model, R-INLA sets the strength
of Arsenal to zero automatically to ensure the identifiability of the team strengths.

We compare the distribution of observed scores and goals difference with the ones predicted

by the gBRW1 model in Fig. 9. It shows that the two compared distribution share a similar

mode. The majority of predicted scores are between 0 and 2 and the predicted goals difference

are symmetrically distributed around 0 which is consistent with our analysis in Sec. 3.3 We

find the observed distributions have a higher variance than the predicted ones, which is due to

the small size of test data (games of last three rounds in season 2020/21). To maintain the

proportion of training data to test data, we should increase the size of both. Alternatively, a

more complex way to increase the size of test data without increasing the size of training data

correspondingly is to dynamically predict new instances of games. Note that the distribution

of both observed and predicted goals difference shows a low level of left skewness rather than

right skewness. This might be due to the absence of home field advantage during the pandemic

period.

21

(a)

(b)

Figure 9: Top: compare the observed scores distribution with the one predicted by the gBRW1
model estimated with the test data (EPL, 2019 - 2021); Bottom: compare the observed goals
difference (home team score - away team score) distribution with the one predicted by the
gBRW1 model.

Other than marginal log-likelihood and classification accuracy, the main evaluation criterion

we used is the ranked probability score (RPS). The ranked probability score was introduced by

Epstein in 1969 (Epstein, 1969). Let r be the number of possible outcomes, p = (p1, · · · , pr)
be the vector of predicted probabilities and a = (a1, · · · , ar) be the observed outcomes. In the

scenario of football, r=3. The RPS is defined as:

RPS =
1

r − 1

r−1∑
i=1

{
i∑

j=1

(pj − aj)}2 (4.10)

Compared with the classification accuracy, the RPS gives a more subtle measure of how good

the predicted probability distributions are in terms of matching observed outcomes. The score

lies between 0 and 1, with lower scores being better.

In order to test the generalization ability of the trained model, we design a temporal evalu-

ation framework that consists of 10 experiments. We predict the scores of matches in last three

rounds of each season with all previous data in each of the 10 experiments. Notably, the K-fold

cross-validation framework is not suitable in the situation of football scores predicting as the

order of temporal data must be preserved.

22

4.3 Results

First, we present the result of the temporal evaluation proposed in Sec. 4.2 to evaluate the

generalization ability of different Poisson likelihood models. We take the mean RPS and the

mean accuracy of the 10 experiments as the evaluation score. As one can see from Tab. 1

and Tab. 2, the scores of the 5 models are very close to each other. gBRW1 has the lowest

mean RPS and BRW has the highest mean accuracy. The scores of the BRW model and two

generalized BRW model have higher standard deviation. Besides, we find all the BRW models

have the lowest RPS in experiment 9 , where we use the data of 2011-2020 to predict the scores

of matches in the last three rounds of season 2019/20. In this season, COVID-19 resulted in

a three-month lay-off. This might means mixed-effect models have better performance when

dealing with disorganized variability in the data.

ID BL IID BRW gBRW1 gBRW2

1 0.2155570 0.2178141 0.2166568 0.2169360 0.2176411
2 0.2528338 0.2539935 0.2427084 0.2428017 0.2399410
3 0.2108165 0.2083761 0.2192847 0.2156414 0.2222196
4 0.2732045 0.2716485 0.2806356 0.2741033 0.2784465
5 0.2413852 0.2418975 0.2346799 0.2318446 0.2327678
6 0.1960751 0.1941502 0.2068492 0.2060962 0.2042430
7 0.2267888 0.2273949 0.2338893 0.2360776 0.2373802
8 0.2435840 0.2441601 0.2767293 0.2708122 0.2716151
9 0.2224038 0.2223710 0.1979354 0.1963483 0.1944676
10 0.2190248 0.2174663 0.2119270 0.2077405 0.2072559

Mean 0.2301674 0.2299272 0.2321296 0.2298402 0.2305978
Std 0.0226516 0.0230354 0.0280562 0.0266476 0.0276743

Table 1: Comparison between RPS of different models computed in the temporal evaluation
framework. We can’t observe obvious correlation between the size of training data and the value
of RPS.

ID BL IID BRW gBRW1 gBRW2

1 0.4209667 0.4141000 0.4192000 0.4159000 0.4140000
2 0.4282000 0.4195667 0.4270333 0.4288000 0.4289667
3 0.4569333 0.4540667 0.4777667 0.4789667 0.4725667
4 0.3679667 0.3668000 0.3617000 0.3648333 0.3604667
5 0.3359000 0.3335333 0.3405000 0.3397667 0.3391000
6 0.4870000 0.4835667 0.5253667 0.5235000 0.5260000
7 0.4203333 0.4159000 0.4454333 0.4435333 0.4365667
8 0.4042333 0.4062000 0.4303667 0.4248333 0.4324667
9 0.4337333 0.4310000 0.4394667 0.4350667 0.4359333
10 0.4372667 0.4348333 0.4476333 0.4524667 0.4520667

Mean 0.4192533 0.4159567 0.4314467 0.4307667 0.4298133
Std 0.0427283 0.0420684 0.0524881 0.0521359 0.0526558

Table 2: Comparison between classification accuracy of different models computed in the tem-
poral evaluation framework. A minus upward trend as the training data size increases could be
found in the first six experiments.

Next, we use the data from 2019/20 and 2020/21, 760 games in total, to test these models.

23

Still, Tab. 3 shows that the results are not ideal in terms of classification accuracy (slightly

better than the accuracy of random guess, 1/3). Nevertheless, including random effects terms

has proven helpful to improve the predictive performance of baseline model that only accounts

for fixed effects.

BL IID BRW gBRW1 gBRW2

RPS 0.3028665 0.3040542 0.2868499 0.2836997 0.2852408
Accuracy 0.4407667 0.4356333 0.4453667 0.4503000 0.4458333

Table 3: The RPS and classification accuracy of applying different models to the test data (EPL,
2019-2021).

24

5 Discussion

The goal of this project is to predict the number of goals scored of EPL using improved Poisson

likelihood models. Models presented in this paper is a simple application of Bayesian hierarchical

modelling. Including both team-specific and time-specific random effect terms allows us to

account for disorganized variability in the data. Such models naturally accommodates the INLA

framework, and hence can be easily implemented and estimated using R-INLA.

An analysis of model fit showed that the model was adequately fitting the real data. With

the well-designed temporal evaluation system, it can be concluded that the model including

complicated random effects improves the capability to explain the variability in the data of the

baseline model that only takes account of fixed team strength. Care should be taken when

increasing variability of the model, as the variability in predictive performance might increase

correspondingly.

One of the limitations of our models is that, we only make use of basic information (date

and clubs) of history data for simplicity. Adding additional features, such as team-specific home

field advantage, the distance traveled, injuries, suspensions, etc., may improve the predictive

ability. In addition, predictions are obtained in one batch. A more more recommended way is to

predict each game using the model estimated with newly updated data despite more computation

required. Also, when constructing precision matrix for BRW models, we set some fixed time-

specific hyperparameters that account for the arrival of new managers and the time difference

between two games next to each other. It might could be improved if there is a way to include

prior information for these hyperparameters in R-INLA.

25

26

References

[1] G. Baio and M. Blangiardo. Bayesian hierarchical model for the prediction of football

results. Journal of Applied Statistics, 37(2):253–264, 2010.

[2] M. Blangiardo and M. Cameletti. Spatial and spatio-temporal Bayesian models with R-

INLA. John Wiley & Sons, 2015.

[3] S. Chib and R. Winkelmann. Markov chain monte carlo analysis of correlated count data.

Journal of Business & Economic Statistics, 19(4):428–435, 2001.

[4] M. J. Dixon and S. G. Coles. Modelling association football scores and inefficiencies in

the football betting market. Journal of the Royal Statistical Society: Series C (Applied

Statistics), 46(2):265–280, 1997.

[5] E. S. Epstein. A scoring system for probability forecasts of ranked categories. Journal of

Applied Meteorology (1962-1982), 8(6):985–987, 1969.

[6] D. Karlis and I. Ntzoufras. On modelling soccer data. Student, 3(4):229–244, 2000.

[7] D. Karlis and I. Ntzoufras. Bayesian modelling of football outcomes: using the skellam’s

distribution for the goal difference. IMA Journal of Management Mathematics, 20(2):133–

145, 2009.

[8] S. Martino and H. Rue. Case studies in bayesian computation using inla. In Complex data

modeling and computationally intensive statistical methods, pages 99–114. Springer, 2010.

[9] T. G. Martins, D. Simpson, F. Lindgren, and H. Rue. Bayesian computing with inla: new

features. Computational Statistics & Data Analysis, 67:68–83, 2013.

[10] T. Opitz. Latent gaussian modeling and inla: A review with focus on space-time applica-

tions. Journal de la société française de statistique, 158(3):62–85, 2017.

[11] H. Rue and L. Held. Gaussian Markov random fields: theory and applications. CRC press,

2005.

[12] H. Rue, S. Martino, and N. Chopin. Approximate bayesian inference for latent gaussian

models by using integrated nested laplace approximations. Journal of the royal statistical

society: Series b (statistical methodology), 71(2):319–392, 2009.

[13] H. Rue, A. Riebler, S. H. Sørbye, J. B. Illian, D. P. Simpson, and F. K. Lindgren. Bayesian

computing with inla: a review. Annual Review of Statistics and Its Application, 4:395–421,

2017.

27

Appendices

A The INLA implementation of Poisson likelihood models

1 #’ Model attack and defense strength as fixed effects

2 #’ Simple Poisson regression

3

4 m.pois = function(df) {

5 formula <- y ~ 1 + attack + defense

6

7 m.bl <- inla(formula , family = "poisson", data=df ,

8 control.predictor = list(compute = TRUE),

9 control.compute = list(config = TRUE))

10

11 return(m.bl)

12 }

13

14

15 #’ Model attack and defense strength as iid random effects

16 #’ The default setting of ’iid ’ in R-INLA could be used to implement this

specification

17

18 m.pois = function(df) {

19 formula <- y ~ 1 +

20 f(attack , model="iid", hyper=list(theta=list(initial=1, fixed=T))) +

21 f(defense , model="iid", hyper=list(theta=list(initial=1, fixed=T)))

22 # To save time , we fixed the hyperparameters

23

24 m.iid <- inla(formula , family = "poisson", data=df ,

25 control.predictor = list(compute = TRUE),

26 control.compute = list(config = TRUE))

27

28 return(m.iid)

29 }

30

31 #’ Model the attack and defense strength as random effects

32 #’ Assume the strength of each team is a random variable changing over time

33 #’ Regard the process as a random walk

34 #’ The default setting of ’generic0 ’ in R-INLA could be used to implement this

specification

35

36 m.pois = function(df) {

37 ls = get_Sig(data , cd=0, nmg =0)

38 # The attack/defense strength share the same precision matrix

39 Sig = ls$Sig
40 id.levels = ls$id
41

42 df.brw = df %>% mutate(

43 ID.a = factor(paste(date , attack), levels=id.levels),

44 ID.d = factor(paste(date , defense), levels=id.levels)

45)

46

47

48 formula <- y ~ 1 +

28

49 f(ID.a, model=’generic0 ’, Cmatrix = Sig , values = id.levels ,

50 diagonal = 1e-5, rankdef = Ts,

51 hyper = list(

52 theta = list(

53 prior = "loggamma",

54 param = c(1 ,.00005),

55 initial = log (100000) ,

56 fixed = T)) # To save time , we fixed the hyperparameters

57) +

58 f(ID.d, model=’generic0 ’, Cmatrix = Sig , values = id.levels ,

59 diagonal = 1e-5, rankdef = Ts,

60 hyper = list(

61 theta = list(

62 prior = "loggamma",

63 param = c(1 ,.00005),

64 initial = log (100000) ,

65 fixed = T))

66)

67

68 m.brw <- inla(formula , family=’poisson ’, data = df.brw ,

69 control.predictor = list(compute = TRUE),

70 control.compute = list(config = TRUE))

71

72 return(m.brw)

73 }

74

75

76 #’ Combining the fixed strength with the time -varying strength

77

78 m.pois = function(df) {

79 ls = get_Sig(df, cd=1, nmg =1) # The attack/defense strength share the same

precision matrix

80 Sig = ls$Sig
81 id.levels = ls$id
82

83 df.brw = df %>% mutate(

84 ID.a = factor(paste(date , attack), levels=id.levels),

85 ID.d = factor(paste(date , defense), levels=id.levels)

86)

87

88

89 formula <- y ~ 1 +

90 attack + defense +

91 f(ID.a, model=’generic0 ’, Cmatrix = Sig , values = id.levels ,

92 diagonal = 1e-5, rankdef = Ts,

93 hyper = list(

94 theta = list(

95 prior = "loggamma",

96 param = c(1 ,.00005),

97 initial = log (100000) ,

98 fixed = T)) # To save time , we fixed the hyperparameters

99) +

100 f(ID.d, model=’generic0 ’, Cmatrix = Sig , values = id.levels ,

101 diagonal = 1e-5, rankdef = Ts,

29

102 hyper = list(

103 theta = list(

104 prior = "loggamma",

105 param = c(1 ,.00005) ,

106 initial = log (100000) ,

107 fixed = T))

108)

109

110 m.gbrw1 <- inla(formula , family=’poisson ’, data = df.brw ,

111 control.predictor = list(compute = TRUE),

112 control.compute = list(config = TRUE))

113

114

115 return(m.gbrw1)

116 }

117

118

119 #’ Combining the iid strength with the time -varying strength

120

121 m.pois = function(df) {

122 ls = get_Sig(df, cd=1, nmg =1)

123 # The attack/defense strength share the same precision matrix

124 Sig = ls$Sig
125 id.levels = ls$id
126

127 df.brw = df %>% mutate(

128 ID.a = factor(paste(date , attack), levels=id.levels),

129 ID.d = factor(paste(date , defense), levels=id.levels)

130)

131

132

133 formula <- y ~ 1 +

134 f(attack , model="iid") + f(defense , model="iid") +

135 f(ID.a, model=’generic0 ’, Cmatrix = Sig , values = id.levels ,

136 diagonal = 1e-5, rankdef = Ts,

137 hyper = list(

138 theta = list(

139 prior = "loggamma",

140 param = c(1 ,.00005) ,

141 initial = log (100000) ,

142 fixed = T)) # To save time , we fixed the hyperparameters

143) +

144 f(ID.d, model=’generic0 ’, Cmatrix = Sig , values = id.levels ,

145 diagonal = 1e-5, rankdef = Ts,

146 hyper = list(

147 theta = list(

148 prior = "loggamma",

149 param = c(1 ,.00005) ,

150 initial = log (100000) ,

151 fixed = T))

152)

153

154 m.gbrw2 <- inla(formula , family=’poisson ’, data = df.brw ,

155 control.predictor = list(compute = TRUE),

30

156 control.compute = list(config = TRUE))

157

158

159 return(m.gbrw2)

160 }

31

B Construct the blocked random walk precision matrix

1 #’ Model the attack and defense strength as random effects

2 #’ Assume the strength of each team is a random variable changing over time

3 #’ Regard the process as a random walk

4 #’ The default setting of ’generic0 ’ in R-INLA could be used to implement this

specification

5 #’

6 #’ Random effects in R-INLA are defined with multivariate Gaussian distribution

with mean zero and precision matrix tau*Sigma

7 #’ The ’generic0 ’ assumes Sigma is a constant matrix

8 #’

9 #’ Random walk could be implemented using ’generic0 ’ by setting Sigma to be the

structure matrix of random walk:

10 #’ 1 -1

11 #’ -1 2 -1

12 #’ ...

13 #’ -1 2 -1

14 #’ -1 1

15 #’ the structure matrix is constructed by adding the matrix (represents one step

in the random walk) with following form:

16 #’ i j

17 #’ i 1 -1

18 #’ j -1 1

19 #’ (unspecified entries are zero)

20 #’

21 #’ Back to our specification , we take u as a vector of random variables to

represent each teams attack/defense

22 #’ ability at each games , to be precise

23 #’ u = (xi_{tm1 ,day1}, ..., xi_{tm1 ,dayn1},...,xi{tmTs ,day1},...,xi_{tmTs ,

daynTs }) (arranged by team first and then the dates)

24 #’ Since each team ’s strength changes over time as a random walk

25 #’ the corresponding precision matrix will be a block matrix whose block is the

structure matrix of random walk

26 #’ We call this specification , blocked random walk (BRW)

27 #’

28 #’ Further , we could generalize BRW by:

29 #’ 1. Consider the effect from the time difference between two games next to

each other

30 #’ 2. Consider the effect from the arrival of new managers (honeymoon period)

31 #’ Saying considering those effects , we mean decreasing the precision (increase

the variance) by dividing

32 #’ one -step blocks by a constant related to those effects

33

34 # Construct the precision matrix

35

36 get_Sig <- function(df , cd = 0, nmg = 0){

37 # Sort df by team and date; save the new order by id

38 id.levels = within(df %>% arrange(attack , date),

39 id <- paste(date , attack))$id # The order of block matrix

40 id = (df %>% mutate(id = as.numeric(factor(paste(date , attack), levels=id.

levels))))$id
41 idx = 1:nrow(df) # get the index of df

42 df$idx = idx # add a index column

32

43

44 # Construct the precision matrix by adding up one -step precision matrix

45 # is.last.game indicates whether the game is the last game in the dataset for

each team

46 # if so stop adding up

47

48 Sig = inla.as.sparse(matrix(rep(0, 4*G*G), 2*G, 2*G)) # initialize the output

49 for (i in idx) {

50 if (df$is.last.game[i] == FALSE) { # if the current game is the last game

of the team , skip the update step

51 j = idx[id == (id[i] + 1)]

52

53 eff.cd = (as.numeric(df$date[j] - df$date[i]))*cd # time difference

between two games next to each other

54 eff.nmg = (df$is.hm.a[i])*nmg # if the game effected by the arrival of

new managers

55

56 eff = 1 + eff.cd + eff.nmg

57

58 Sig[i,i] = Sig[i,i] + eff

59 Sig[j,j] = Sig[j,j] + eff

60 Sig[i,j] = Sig[i,j] - eff

61 Sig[j,i] = Sig[j,i] - eff

62 }

63 }

64

65 # So far , the precision matrix Sigma follows the order of idx

66 # Arrange the matrix by id

67 idx.sorted = (data.frame(idx , id) %>% arrange(id))$idx
68 Sig.sorted = Sig[idx.sorted , idx.sorted]

69

70 return(list(Sig=Sig.sorted , id=id.levels))

71 }

33

C The temporal evaluation framework

1 # Import the data set

2 source("code/0_prep_data.r")

3

4 # Load the model list

5 model.ls = list()

6 i = 1

7 for (filename in list.files("code/models", full.names = T)){

8 model.ls[[i]] = filename

9 i = i+1

10 }

11

12 # Load the function that calculates the precision matrix for ’generic0 ’ model

13 source(model.ls [[1]])

14

15 # Define the function to calculate rps

16 RPS_fun <-function(p0 ,p1 ,a0 ,a1){

17 s1 = (p0-a0)

18 s2 = (p0-a0+p1-a1)

19 r = (s1*s1 + s2*s2)/2

20 return(r)

21 }

22

23 # Initialize the output

24 rps.ma = matrix(rep(0,6*10), nrow = 10, ncol = 6)

25 acc.ma = matrix(rep(0,6*10), nrow = 10, ncol = 6)

26

27 for (m in c(1:5)){ # load the model m

28 source(model.ls[[m+1]])

29

30 for (n in 1:10) { # conduct the experiment n

31 #We create a new dataframe where the matches of the last three rounds (30

games) in each season

32 # have NA in their response variables y

33 r = 30

34 data=df[c(1:(380*n), (G+1):(G+380*n)) ,]

35 data$goals = data$y
36 G.tr = nrow(data)/2L

37 data[(G.tr -r+1):G.tr,"y"]<-NA

38 data [(2*G.tr -r+1) :(2*G.tr),"y"]<-NA

39

40 # Train the model with new data

41 mdl = m.pois(data)

42 print("CPU used:")

43 print(mdl$cpu.used)
44 print(paste("Model",m,"Trained with",G.tr ,"games ,",n,"seasons."))

45

46 #We obtain the samples from the linear predictors

47 nbsamp = 1000

48 samp = inla.posterior.sample(nbsamp , mdl)

49 predictors = inla.posterior.sample.eval(function (...) {Predictor}, samp)

50

51 #We will store the scores.samples from the posterior predictive in a matrix

34

scores.samples

52

53 scores.samples=matrix(0,nrow=2*r,ncol=nbsamp)

54

55 rates.H=exp(predictors [(G.tr -r+1):G.tr ,])

56 vector.rates.H=as.vector(rates.H)

57 scores.samples [1:r,]= matrix(rpois(length(vector.rates.H),vector.rates.H),

nrow=r,ncol=nbsamp)

58

59 rates.A=exp(predictors [(2*G.tr -r+1):(2*G.tr) ,])

60 vector.rates.A=as.vector(rates.A)

61 scores.samples [(r+1) :(2*r) ,]=matrix(rpois(length(vector.rates.A),vector.

rates.A),nrow=r,ncol=nbsamp)

62

63 # Get the probability of draw and lose (for fact and sample)

64 a2 = as.numeric(df[(G.tr-r+1):G.tr, "y"] > df[(2*G.tr-r+1) :(2*G.tr),"y"])

65 a1 = as.numeric(df[(G.tr-r+1):G.tr, "y"] == df[(2*G.tr-r+1) :(2*G.tr),"y"])

66 a0 = as.numeric(df[(G.tr-r+1):G.tr, "y"] < df[(2*G.tr-r+1) :(2*G.tr),"y"])

67

68 p2 = rowMeans(scores.samples [1:r,] > scores.samples [(r+1) :(2*r) ,])

69 p1 = rowMeans(scores.samples [1:r,] == scores.samples [(r+1) :(2*r) ,])

70 p0 = rowMeans(scores.samples [1:r,] < scores.samples [(r+1) :(2*r) ,])

71

72 # Pass those probabilities to RPS function to calculate RPS

73 rps.ma[n,m] = mean(RPS_fun(p0 , p1 , a0 , a1))

74 print(paste("RPS is",rps.ma[n,m],"."))

75

76 # Compute the accuracy

77 scores.obs = data$goals[is.na(data$y)]
78 df.pred = (scores.samples [1:r,] > scores.samples [(r+1) :(2*r) ,])*2 + (scores

.samples [1:r,] == scores.samples [(r+1):(2*r) ,])

79 df.true = matrix(rep((scores.obs [1:r] > scores.obs[(r+1) :(2*r)])*2 + (

scores.obs [1:r] == scores.obs[(r+1) :(2*r)]) ,1000), nrow=30, ncol =1000)

80 acc.ma[n,m] = mean(df.pred == df.true)

81 print(paste("Accuracy is",acc.ma[n,m],"."))

82

83 print("

===")

84 }

85

86 # Check the statics of the validation rps

87 rps.stats = list(mean=mean(rps.ma[,m]),sd=sd(rps.ma[,m]),quantile=quantile(rps

.ma[,m]))

88 print("RPS statics:")

89 print(rps.stats)

90 print("

===")

91 print("

===")

92 }

93

94 # Display the rps.ma and acc.ma

95 rps.ma

96 apply(rps.ma , 2, mean)

35

97 apply(rps.ma , 2, sd)

98

99 acc.ma

100 apply(acc.ma, 2, mean)

101 apply(acc.ma, 2, sd)

36

	Introduction
	Methodology
	Bayesian inference
	The integrated nested Laplace approximation
	The core of INLA: Laplace approximation
	INLA setting: latent Gaussian models
	Inference with INLA

	The R-INLA package

	Data exploration and preprocessing
	Data description
	Data preparation
	Basic analysis of English Premier League data

	Soccer scores prediction
	Models
	Simple Poisson Regression: baseline
	Team strength as a time-invariant random effect: iid model
	Team strength as a time-variant random effect: blocked random walk model

	Estimation and evaluation
	Results

	Discussion
	Appendices
	The INLA implementation of Poisson likelihood models
	Construct the blocked random walk precision matrix
	The temporal evaluation framework

