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Abstract

This report presents an overview of Clarice Poon’s seminar on Off-the-grid sparse es-
timation [4], focusing on the theoretical analysis of the stability of an off-the-grid sparse
regularization method, Beurling-Lasso [6, 7]. First, we introduce the Beurling-Lasso method
and some properties of the regularized problem which are critical to the stability analysis.
Next we examine some of the related literature. Finally, in Section 3, we state the main re-
sult in an informal simplified way and point out the improvement compared with the related
work.

1 Introduction

Sparse regularization is a technique used to prevent problems such as “overfitting” from occurring
in machine learning and compressed sensing. Simply speaking, sparse regularization is just
adding a “penalty” that favors sparser solution to the objective function. The regularized
optimization problem could be expressed as

min
W,a

1

2
L(W,a) + ‖a‖0, (1.1)

where ‖·‖0 is defined as the number of non-zero elements in a. In practice, we normally use a
computationally feasible norm `1 to approximate the non-convex norm `0. In the case of linear
regression, this method is known as Lasso. Further, we can generalize the Lasso method by
considering a general problem of estimating an unknown sparse measure µ0 ∈ M(X ), where
X ⊂ Rd+1.

Problem 1 (Estimation of an unknown sparse measure). Define φ(x) = (ϕ(〈tk, x1〉 + x2))k,
m(x) =

∑n
i=1 aiδxi =

∑n
i=1 aiδ(wi,bi), where ai ∈ R, (wi, bi) ∈ X ⊂ Rd+1. Then the prediction

model (multilayer perceptron) could be expressed as (fW,a(tk))k = Φm =
∫
Rd+1 φ(x)dm(x). The

corresponding convex optimization problem in the least squares sense is

min
m∈M(X )

‖y − Φm‖2. (1.2)

Beurling-Lasso (Blasso) is an increasingly popular method to estimate such a sparse measure.
Its difference from Lasso is that the `1-norm is replaced by the “total variation”.

Problem 2 (Beurling-Lasso).

min
m∈M(X )

1

2
‖y − Φm‖2 + λ‖m‖TV, (Pλ(y))

where the total variation ‖m‖TV = sup{Ai}⊂X
∑

i |m(Ai)|.

When m(x) is a sparse measure ma,x, ‖ma,x‖TV = ‖a‖1. While when m(x) is continuous
satisfying dm(x) = f(x)dx, ‖ma,x‖TV = ‖f‖L1 . Thus, we can regard it as a generalization of
`1-norm from “the discrete setting” to “the continuous setting”. In this study, we are interested
in the theoretical properties of the regularized problem.

Proposition 1 (First order optimality condition).

mλ(x) ∈ argmin Pλ(y)⇐⇒ ηλ(x) =
1

λ
Φ∗(y − Φmλ(x)) ∈ ∂‖mλ‖TV, (1.3)

where Φ∗ denotes the corresponding pullback.

1



In our simplified case, if mλ is a sparse measure, where mλ(x) =
∑n

i=1 aiδxi , then ηλ ∈
∂‖mλ‖TV means ηλ ∈ {η : ‖η‖∞ ≤ 1, η(xi) = sign(ai)}, where µλ is a solution to the dual
problem of (Pλ(y)), also known as “the dual certificate”. It is the support of mλ that we are
really interested in. With the support, we can recover the sparse measure. In particular, it is
contained in a set of “spikes” (or “amplitudes”) of the dual certificate, i.e. Supp(mλ) ⊂ {x :
|ηλ(x)| = 1} (see Fig. 1).

With the work of Duval and Peyré in 2015 [2], we only need to study the minimal norm
certificate η0 = limλ→0 ηλ to understand the structure property of the recovered measure, where
the limit is in the L∞ sense. If η0 is nondegenerate, then the sparsity and stability of Blasso
solution from a noisy data is guaranteed.

2 Related work

From a theoretical perspective, understanding the performance of the Blasso method corresponds
to establishing a “Rayleigh criterion”, which is the minimum allowable separation distance
between two spikes for the method to recover them from linear measurements. [6]

Candès and Fernandez-Granda [1] proved a sharp result under the Fourier measurements
which is the first result in this direction. Tang et al [8] have extended this result to the case
where only a small number of Fourier measurements are randomly selected. Notably, their
result is only valid under a random signs assumption on the amplitudes of the Dirac masses
and strongly depends on the translation invariance of the linear operator and the underlying
domain, which are not applicable to spatially varying operators.

3 Main results

The main results obtained by Poon et al [6] are as follows. First, use the infinite-dimensional
extension of the “golfing scheme” remove the random signs assumption of Tang et al while still
keeping a sharp number of random measurements. Second, extend the framework to encompass
non-translation invariant operators in a natural way with improved separation conditions.

The latter is done through a particular Riemannian geometric framework. To be precise,
they first define the limit covariance kernel K (x, x′) = Eωϕω(x)ϕω (x′) which measures how
much two Diracs at different points x, x′ interact with each other as the number of samples
approaches infinity. Then, they define the metric tensor in the Fisher metric sense, which is
gx = ∇1∇2K(x, x). Finally, define the associated geodesic distance,

dg(x, x
′) = inf

γ

∫ 1

0

√
γ′(t)>gγ(t)γ′(t)dt, (Fisher-Rao distance)

where γ : [0, 1]→ X , γ(0) = x, γ(1) = x′. The Fisher-Rao distance is the natural way to ensure
and quantify support recovery, since it preserves the invariance of the problem under spatially
varying operators [7]. Here we present an informal simplified version of their main result.

Theorem 1. Let s ∈ N and let (xi)
s
i=1 be s.t.

min
i 6=j

dg(xi, xj) ≥ ∆s,K , (3.1)

then η0 is nondegenerate.

It shows that if the Fisher distance between spikes is larger than a Rayleigh separation
constant, then the Blasso method recovers a stream of Diracs in a stable way. It is a general
result in the multivariate setting, which is crucial for many practical applications. For example,
in the quantitative magnetic resonance imaging problem (qMRI), fine discretization leads to
highly coherent dictionaries which will break sparsitency. Formulation as sparse-group Blasso
(SGB-Lasso) means we can have strong recovery guarantees (see Fig. 2 and Tab. 1) and the
theoretical guarantees could be found in [5].
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[2] V. Duval and G. Peyré, Exact support recovery for sparse spikes deconvolution, Founda-
tions of Computational Mathematics, 15 (2015), pp. 1315–1355.

[3] M. Golbabaee and C. Poon, An off-the-grid approach to multi-compartment magnetic
resonance fingerprinting, arXiv preprint arXiv:2011.11193, (2020).

[4] C. Poon, Off-the-grid sparse estimation. ACM Seminar, University of Edinburgh, 2020.

[5] C. Poon and M. Golbabaee, The sparse-group beurling-lasso, tech. report, University of
Bath, https://cmhsp2.github.io/files/journal/sparse_group_blasso.pdf, 2020.
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Appendix

The Fig. 1 below illustrates that the support of mλ is contained in a set of “spikes” (or
“amplitudes”) of the dual certificate.

Figure 1: Characterization of regularized solutions mλ: Supp(mλ) ⊂ {x : |ηλ(x)| = 1}.

Formulation as SGB-Lasso means we can have strong recovery guarantees. In Fig. 2, they
compare the performance of the SGB-Lasso method with existing methods, SGB-Lasso outper-
forms the baselines in terms of the visual appearance of the mixture map. Further, the estimated
T1/T2 values for WM and GM are within the range of literature values (see Tab. 1).

Figure 2: Estimated mixture maps of the WM, GM and a CSF related compartment for in-vivo
brain using different methods [3].

T1 (ms) T2 (ms)

Tissue Literature SGB-Lasso PVMRF SPIJN BayesianMRF Literature SGB-Lasso PVMRF SPIJN BayesianMRF

WM 694-862 829 806 699 821 68-87 81 80 51 77
GM 1074-1174 1114 1114 1483 874 87-103 102 105 164 82

Table 1: Estimated T1/T2 values for WM and GM compartments using different methods [3].
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