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1. Introduction. Deep learning is based on approximations by deep networks.4

Deep networks are neural networks with one or more hidden layers. One hidden5

layer neural networks correspond to approximations fN with N units of multivariate6

functions f : Rd → R of the form7

(1.1) fN (x) =

N∑
i=1

αiσ
(
wT
i x+ θi

)
, αi, θi ∈ R,x,wi ∈ Rd,8

for some activation function σ : R → R. For deep networks, each unit of each9

layer performs an operation of the form σ(ω · x + θ). Deep ReLU networks use the10

activation function σ(x) = max(0, x). The depth of a neural network is defined as the11

number of hidden layers and the size is the total number of units.12

Back to the late 1980s, it has been shown that any continuous functions can be13

approximated by shallow networks that use sigmoid functions as activation functions.14

A similar result for Borel measurable functions was also proved. These works provide15

the essential theoretical support for machine learning with neural networks. However,16

from a practical point of view, it is also important to consider how fast approximations17

by neural networks converge and how expensive the method is. For example, for a18

real valued function f in Rd and for some accuracy constant ε > 0, there exists a19

neural network fN of size N that satisfies20

(1.2) ‖f − fN‖ < ε with N = O(ε−
d
m ), 121

for some norm ‖·‖, where m is the order of integrable or bounded derivatives. For large22

dimensions d, the size N increases at a geometric rate with d. Such a phenomenon23

is known as the “curse of dimensionality”. Many results of the form (1.2) have been24

derived for shallow and deep networks; see Table 1a.25

∗Montanelli, Hadrien and Du, Qiang, 2019. New Error Bounds for Deep ReLU Networks Using

Sparse Grids. SIAM journal on mathematics of data science, 1(1), pp.78–92. https://epubs.siam.

org/doi/abs/10.1137/18M1189336?mobileUi=0

1The big O notation here means that there exists a C > 0 such that N ≤ Cε−
d
m for sufficiently

small ε, where C might depend on the dimension d.
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2. Main results. Their paper aims to address the problem, why and when deep26

networks can lessen or break the curse of dimensionality. Unlike many related works27

that focus on a particular set of functions which have a very special structure (such as28

compositional or polynomial ; see Table 1b), they consider functions in the Korobov29

spaces which is more general for high dimensional multivariate approximation. The30

Korobov spaces are defined by31

(2.1) X2,p(Ω) =
{
f ∈ Lp(Ω) : f |∂Ω = 0, Dkf ∈ Lp(Ω), |k|∞ ≤ 2

}
,32

with norm |f |2,∞ =
∥∥∥ ∂2df
∂x2

1...∂x
2
d

∥∥∥
∞

. By establishing a connection with sparse grids,33

they present new error estimates for which the curse of dimensionality is lessened; see34

Theorem 2.1 below.35

Theorem 2.1. For any dimension d and 0 < ε < 1, there is a deep ReLU net-36

work with d inputs x1, ..., xd capable of expressing any function f in X2,p([0, 1]d)37

that satisfies |f |2,∞ ≤ 1 with accuracy ε, and has depth O(| log2 ε|(d − 1)) and size38

O(ε−
1
2 | log2 ε|

3
2 (d−1)+1(d− 1)).39

Compared with the result in Table 1a, the exponent d only affects logarithm40

factors | log2 ε| instead of ε−1. Their result shows that Deep ReLU networks can41

significantly lessen the effect of large dimensions d.42

3. Sketch of proof. They use the following technique to prove the new error43

bounds. Show certain functions f can be approximated by sparse grids fm to any44

prescribed accuracy ε, and so sparse grids fM by neural networks fN of size N .45

Together, the approximation error can be decomposed as46

(3.1) ‖f − fN‖ ≤ ‖f − fm‖+ ‖fm − fN‖,47

for some norm ‖·‖.48

3.1. Approximating functions in the Korobov spaces using sparse girds.49

To approximate functions of d variables x = (x1, . . . , xd) ∈ [0, 1]d, they introduce a50

tensor product construction. One can consider a family of grids Ωl of level l =51

(l1, . . . , ld) with a grid size hl = (2−l1 , . . . , 2−ld) and 2l − 1 points xi,l = i
⊗
hl,52

1 < i < 2l − 1. For each Ωl, one defines piecewise linear hat functions53

(3.2) φl,i =

d∏
j=1

φlj ,ij (xj),54
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where φ(xl,i) = φ(
x−xl,i

hl
) and φ(x) = max(0, 1− |x|).55

Consider a function spaces spanned by these functions Vl = span{φl,i : 1 ≤56

i ≤ 2l − 1} and the hierarchical increments space Wl = span{φl,i : i ∈ I l}, where57

Il = {i ∈ Nd : 1 ≤ i ≤ 2l − 1, ij odd for all j}. These increment spaces satisfy the58

relation, Vm =
⊕

1≤l≤m
Wl.59

Sparse grids are discretizations of X2,p(Ω) defined by V
(1)
m =

⊕
1≤|l|1≤m+d−1

Wl and60

correspond to a number of grid points M = O
(
h−1
m |log2 hm|

d−1
)

; see Figure 1 for a61

sparse grid in two dimensions. For any f
(1)
m ∈ V (1)

m ,62

(3.3) f (1)
m (x) =

∑
|l|1≤m+d−1

∑
i∈Il

vl,iφl,i(x),63

where the hierarchical coefficients vl,i depends on two order mixed derivatives of f .64

For any prescribed accuracy ε,
∥∥∥f − f (1)

m

∥∥∥
∞

= ε with N = O
(
ε−

1
2 |log2 ε|

3
2 (d−1)

)
.65

3.2. Approximating sparse girds by deep networks. The following propo-66

sition shows how deep networks can approximate multidimensional hat functions.67

Proposition 3.1. For any dimension d and 0 < ε < 1, there is a deep ReLU net-68

work with d inputs x1, . . . , xd that estimates the multiplication φl,i(x) =
d∏
j=1

φlj ,ij (xj)69

with accuracy ε, outputs 0 if one of the φlj ,ij (xj) is 0, and has depth O(| log2 ε| log2 d)70

and size O(| log2 ε|(d− 1)).71

Then, with the fact that functions in X2,p([0, 1]d) can be approximated by sparse72

grids fm ∈ V (1)
m , show that sparse grids can be represented by deep networks fN using73

the approximated multiplication written as φ̃l,i(x):74

(3.4) fN (x) =
∑

|l|1≤m+d−1

∑
i∈Il

vl,iφ̃l,i(x).75

The corresponding network is shown in Figure 2.76

4. Conclusion. Their proof is based on the ability of deep networks to approx-77

imate sparse grids via a binary tree structure (see Figure 2a). Their result provides78

an upper bound for the approximation complexity when the same network is used79

to approximate all functions in a given Korobov space, without taking advantage of80

special properties of the approximated functions. Yet it is pointed out that sparse81

grids they used are highly anisotropic: to be efficient, these require the functions82

being approximated to be aligned with the axes.83
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Table 1: Approximation results for different activation functions.

(a) Approximation results with the curse of dimensionality.

Shallow Deep

σ ∈ C∞(R)

(not polynomial)

f ∈Wm,p([−1, 1]d)

depth 1, size O(ε−
d
m )

‖·‖p

-

σ ∈ C∞(R)

(not polynomial)

f analytic in Eρ

depth 1, size O(| logρ ε|)

‖·‖p

-

σ ReLU

f ∈Wm,2(Bd)

depth 1, size O(ε−
d
m )

‖·‖2

f ∈Wm,∞([0, 1]d)

depth O(| log2 ε|), size O(ε−
d
m )| log2 ε|

‖·‖∞

(b) Approximation results without the curse of dimensionality.

Shallow Deep

σ ∈ C∞(R)

(not polynomial)

f ∈Wm,∞([−1, 1]d), compositional

depth 1, size O(ε−
d
m )

‖·‖∞

f ∈Wm,∞([−1, 1]d), compositional

depth log2 d, size O((d− 1)ε−
2
m )

‖·‖∞

σ ReLU

f Lipschitz, [−1, 1]d, compositional

depth 1, size O(ε−d)

‖·‖∞

f Lipschitz, [−1, 1]d, compositional

depth log2 d, size O((d− 1)ε−w)

‖·‖∞

Fig. 1: Left: All subspaces Wl in two dimensions for (l1, l2) ≤ (3, 3), and sparse and

full grids V
(1)
3 and V

(∞)
3 . Right: A sparse grid in two dimensions.
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Fig. 2: The sparse grid based deep network.

(a) The network that implements the (d− 1) products in
∏d

j=1 φlj ,ij(xj) with a binary

tree structure.

(b) The network consists of M subnetworks S1, S2, . . . , SM , which implement the mul-

tiplication,
∏d

j=1 φlj ,ij (xj).
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