
Project 2: Regression Models in JAGS

Dongrui Shen

Background and models
The cars data are from an experiment on the stopping distances of cars from different initial speeds. A
linear model E(disti) = µi = β1speedi + β2speed2

i is a plausible fit to the data, as illustrated here.

5 10 15 20 25

0
20

60
10

0

speed

di
st

However, notice that the variance in the data may be increasing with the mean. To address this, 3 alternative
models for the data will be compared using Bayesian methods. The models are

1. disti ∼ N(µi, σ
2), priors β1 ∼ U(0, 2.5), β2 ∼ N(0, 100) and log(1/σ2) ∼ N(0, 100).

2. disti ∼ N(µi, (β3 + β4speedi)2), priors as above for β1 and β2. β3 ∼ U(0, 20) and β4 ∼ U(0, 2).

3. disti ∼ Gamma(µi/φ, φ) where µi/φ is the shape parameter and φ the scale parameter. Priors
φ ∼ U(0, 10), β1 ∼ U(0, 2.5), log β2 ∼ N(−2, 100).

Gibbs sampling was used for inference as implemented in JAGS, which was here used via package rjags.
Note that in JAGS normal (and log-normal) densities are parameterized in terms of mean and precision,
τ = 1/σ2, while gamma densities are parameterized in terms of shape and rate = 1/φ.

JAGS model specifications.
The following codes are used to implement the three models (See the corresponding text files in “/scripts/”).
Model 1: a constant variance normal model
model {

for (i in 1:N) { ## loop over observations
statistical model
mu[i] <- beta1*x[i] + beta2*(x[i]^2)
y[i] ~ dnorm(mu[i],tau) ## yi ~ N(mui,1/tau), where tau is the precision

}

1

priors
beta1 ~ dunif(0,2.5)
beta2 ~ dnorm(0,.01) ## beta2 ~ N(0,100)
tau ~ dlnorm(0,.01) ## log(tau) ~ N(0,100)

}

Model 2: a normal model in which the standard deviation increases with speed
model {

for (i in 1:N) { ## loop over observations
statistical model
mu[i] <- beta1*x[i] + beta2*(x[i]^2)
y[i] ~ dnorm(mu[i],1/(beta3 + beta4*x[i])^2) ## yi ~ N(mui,(beta3+beta4*xi)^2)

}
priors
beta1 ~ dunif(0,2.5)
beta2 ~ dnorm(0,.01) ## beta2 ~ N(0,100)
beta3 ~ dunif(0,20)
beta4 ~ dunif(0,2)

}

Model 3: a gamma model
model {

for (i in 1:N) { ## loop over observations
statistical model
mu[i] <- beta1*x[i] + beta2*(x[i]^2)
y[i] ~ dgamma(mu[i]/phi,1/phi) ## yi ~ gamma(mui/phi,phi), where phi is the scale

}
priors
phi ~ dunif(0,10)
beta1 ~ dunif(0,2.5)
beta2 ~ dlnorm(-2,.01) ## log(beta2) ~ N(-2,100)

}

The JAGS files are compiled into a Gibbs sampler via a call to the function jags.model. Note that we take
two parallel chains for each parameter since it is useful for judging convergences and computing DIC to
compare models.
library(rjags) ## include the package

create JAGS models
take 2 parallel chains for each parameter by setting n.chains=2
mod1 <- jags.model("./scripts/model1.jags",

data=list(x=cars$speed,y=cars$dist,N=nrow(cars)), n.chains=2, quiet=TRUE)
mod2 <- jags.model("./scripts/model2.jags",

data=list(x=cars$speed,y=cars$dist,N=nrow(cars)), n.chains=2, quiet=TRUE)
mod3 <- jags.model("./scripts/model3.jags",

data=list(x=cars$speed,y=cars$dist,N=nrow(cars)), n.chains=2, quiet=TRUE)

Simulation and checking
First, use coda.samples to run simulation. It is a wrapper function for jags.samples. Unlike jags.samples,
its output is one single mcmc.list object.
sam1.coda <- coda.samples(mod1, c("beta1","beta2","tau"), n.iter=50000, thin=10)
sam2.coda <- coda.samples(mod2, c("beta1","beta2","beta3","beta4"), n.iter=40000, thin=5)
sam3.coda <- coda.samples(mod3, c("phi","beta1","beta2"), n.iter=50000, thin=10)

2

Then, we use other functions in the coda package to check the convergence and mixing of the chains, including:

• plot.mcmc(sample, trace = TRUE, density = TRUE, ...): plot the chains of the sampled output
and the kernel density estimates (see details in ?density) for the posterior distributions.

• effectiveSize(sample): to get the effective sample sizes of the sampled output. Here, we consider
effective sample sizes of over 1000 for each parameter to be sensible.

Besides, we use acfplot, crosscorr to check the auto-correlations and cross-correlations. We also compare
the highest posterior density intervals with the 95% credible intervals with HPDinterval and quantile (see
details in /scripts/simulate.r).
sample code: check convergence and mixing
par(mfrow=c(3,2), mar=c(4,4,1,1))
plot(sam1.coda[[1]]) ## plot chains and density estimates of chain 1
plot(sam1.coda[[2]]) ## plot chains and density estimates of chain 2
effectiveSize(sam1.coda[[1]]) ## print effective sample size of chain 1
effectiveSize(sam1.coda[[2]]) ## print effective sample size of chain 2

the two chains should behave similar so we only display checking results for chain 1

Checking results for Model 1

0 10000 20000 30000 40000 50000

0.
0

1.
0

2.
0

Iterations

Trace of beta1

0.0 0.5 1.0 1.5 2.0 2.5

0.
0

0.
4

Density of beta1

N = 5000 Bandwidth = 0.09979

0 10000 20000 30000 40000 50000

0.
05

0.
15

Iterations

Trace of beta2

0.00 0.05 0.10 0.15

0
4

8
14

Density of beta2

N = 5000 Bandwidth = 0.005279

0 10000 20000 30000 40000 50000

0.
00

2
0.

00
6

Iterations

Trace of tau

0.002 0.004 0.006 0.008

0
20

0
40

0

Density of tau

N = 5000 Bandwidth = 0.0001748

beta1 beta2 tau
1360.051 1393.169 4715.683

Here we generate two parallel chains with 50000 samples each and save every 10th sample. In the chain
convergence plots for each parameters, it shows that the chains have a very short burn-in period (take 1000
iterations for adaptation). Since we take 2 parallel chains for each parameter, after comparing their trace
plots and posterior density estimate plots, we can observe they both have a high amount of fluctuation (good
mixing) and no real patterns in the graphs indicative of low auto-correlation. The effective sample sizes for
each parameter are over 1000. Especially, the effective size for τ is close to 5000, indicating high independence
between samples.

In the posterior density estimate plots, the prior and posterior densities of β1, beta2, τ are quite different from
each other. To be exact, β1 ∼ U(0, 2.5), β2 ∼ U(0, 100) and log(τ) ∼ U(0, 100). However, their posterior

3

densities show a similar pattern to a normal distribution with a small standard deviation respectively. Thus,
the priors for Model 1 are sensible since observing the data updated our beliefs about the parameters.

Checking results for Model 2

0 10000 20000 30000 40000

0.
0

1.
0

2.
0

Iterations

Trace of beta1

0.0 0.5 1.0 1.5 2.0 2.5

0.
0

0.
4

0.
8 Density of beta1

N = 8000 Bandwidth = 0.08374

0 10000 20000 30000 40000

0.
00

0.
10

Iterations

Trace of beta2

0.00 0.05 0.10 0.15 0.20

0
4

8
12

Density of beta2

N = 8000 Bandwidth = 0.004882

0 10000 20000 30000 40000

0
5

10

Iterations

Trace of beta3

0 5 10 15 20

0.
00

0.
10

Density of beta3

N = 8000 Bandwidth = 0.5395

0 10000 20000 30000 40000

0.
0

0.
6

1.
2

Iterations

Trace of beta4

0.0 0.5 1.0 1.5

0.
0

1.
0

Density of beta4

N = 8000 Bandwidth = 0.03807

beta1 beta2 beta3 beta4
1314.147 1352.420 2085.280 2249.049

The chain plots for Model 2 show a good mixing and convergence as Model 1. Through the auto-correlation
checking, we find the acf plots converges to 0 around lag < 10. Thereafter, we only need 40000 samples each
and save every 5th sample to achieve effective sample sizes of over 1000.

In the posterior density estimate plots, for βi, where i = 1, 2, 4, we can observe obvious differences from their
prior densities. For β3, its posterior shows a monotonically decreasing pattern, which is somewhat not that
different from its prior β3 ∼ U(0, 20), indicating the choice of the prior for β3 might be improper. The highest
posterior density intervals are a little different from the 95% credible intervals except for β3, which is resulted
from its skewed posterior distribution.

4

Checking results for Model 3

0 10000 20000 30000 40000 50000

0.
0

1.
0

2.
0

Iterations

Trace of beta1

0.0 0.5 1.0 1.5 2.0 2.5

0.
0

0.
4

0.
8 Density of beta1

N = 5000 Bandwidth = 0.08835

0 10000 20000 30000 40000 50000

0.
00

0.
10

Iterations

Trace of beta2

0.00 0.05 0.10 0.15

0
4

8
14

Density of beta2

N = 5000 Bandwidth = 0.005217

0 10000 20000 30000 40000 50000

4
6

8

Iterations

Trace of phi

2 4 6 8 10

0.
0

0.
2

Density of phi

N = 5000 Bandwidth = 0.2178

beta1 beta2 phi
1304.109 1322.647 4731.292

We take 50000 iterations and save every 10th sample to get effective sizes of over 1000. The chain plots for
Model 3 also show a good mixing and convergence. However, the simulation process is much slower when
compared with the other two models. We compare the posterior means of each model to the linear regression
coefficients and found the posterior means of Model 3 is more different from the linear regression coefficients.

For β1, β2 and φ, their posteriors are very different from priors, which is what we expect to see.

Other checks We checked the two chains both and found their summary plots are very similar, indicating
good convergence and mixing. We also checked acf plots, basically, chains for parameters excluding β1 and
β2 would have lower auto-correlation. In the cross-correlation checking for all three models, we found β1 and
β2 are highly correlated.

Model comparison
Deviance information criterion Define the deviance as D(θ) = −2 log(p(y|θ)) + const, where θ are
unknown parameters of the model and p(y|θ) is the likelihood. Then the deviance information criterion is
calculated as

DIC = pD + E(D(θ)),

where pD is the effective number of parameters. The larger the effective number of parameters is, the easier
it is for the model to fit the data, and so the deviance needs to be penalized.

The dic.samples generates penalized deviance statistics to compare models. Basically, a low deviance means
a good fit. The pD term compensates for this effect by favoring models with a smaller number of parameters.
As suggested in the following outputs, Model 3 has the lowest DIC, so it is possible that Model 3 is the best
choice.
dic.samples(mod1, n.iter=50000, thin=10)

Mean deviance: 413.7
penalty 2.955
Penalized deviance: 416.7

5

dic.samples(mod2, n.iter=40000, thin=5)

Mean deviance: 406.9
penalty 3.988
Penalized deviance: 410.9

dic.samples(mod3, n.iter=50000, thin=10)

Mean deviance: 397.2
penalty 3.14
Penalized deviance: 400.3

Model fitting As a check that the choice is sensible, we take evenly spaced parameters from each model’s
posteriors to produce 1000 approximately independent curves (500 for each chain) of E(dist) as a function of
speed.

The first figure below show that all the three models for sampling result in parameter estimates that perform
well in fitting the cars data, while it is true that the variation in our estimates increases as speed increases.
Model 2 and Model 3 show a higher variability compared with Model 1. However, the fitting performances
for these two models are very close to each other. In some simulations, Model 3 could overlay a little bit
more data points, but sometimes it does not.Nevertheless, considering that the Model 3 is less affected by the
prior guesstimates when compared with Model 2, in the case of lacking prior empirical information, we would
prefer Model 3.

In addition, we use the the 2.5, 50 and 97.5 percentiles of the coefficients of each model to construct the
predictions and then plot them against the observed points. Model 3 seems to have a narrower credible
interval, implying a good fit (see details in “/scripts/simulate.r”).

5 10 15 20 25

0
20

40
60

80
10

0
12

0

Model 1

Speed

D
is

ta
nc

e

5 10 15 20 25

0
20

40
60

80
10

0
12

0

Model 2

Speed

D
is

ta
nc

e

5 10 15 20 25

0
20

40
60

80
10

0
12

0

Model 3

Speed

D
is

ta
nc

e

6

	Background and models
	JAGS model specifications.
	Simulation and checking
	Checking results for Model 1
	Checking results for Model 2
	Checking results for Model 3

	Model comparison

